Electrochemical Synthesis

Many chemical reactions use hazardous chemicals that are extremely environmentally unfriendly.  In some cases, electrochemical synthesis could provide a clean alternative by replacing these chemical reagents with electrons.  Using electrons has the added advantage of allowing reactions to proceed under milder conditions.  In cases where two chemical reactions compete, electrons appear as a good substitute, limiting unwanted side-products.

A collaboration between Cambridge Reactor Design and Southampton Chemistry led to the development of the Ammonite8 and Ammonite15 flow electrochemical cells.  These allow tens of grams of product to be produced per hour.  A potentiostat (Biologic SP300) is also available to run electrochemical experiments in Rouen, with other dedicated to preparative electrochemical synthesis becoming available soon.

Associated Companies Expertise

Key Publications

  • Flow Electrolysis Cells for the Synthetic Organic Chemistry Laboratory, D. Pletcher, R. A. Green, R. C. D. Brown, Chem. Rev., 2018, 118, 4573–4591
  • Electrochemical Deprotection of para-Methoxybenzyl Ethers in a Flow Electrolysis Cell, R. A. Green, K. E. Jolley, A. A. M. Al-Hadedi, D. Pletcher, D. C. Harrowven, O. De Frutos, C. Mateos, D. J. Klauber, J. A. Rincón, R. C. D. Brown, Org. Lett., 2017, 19, 2050–2053
  • An electrochemical coupling of organic halide with aldehydes, catalytic in chromium and nickel salts. The Nozaki-Hiyama-Kishi reactionDurandetti, J.-Y. Nédélec, J. Périchon, Org. Lett., 2001, 3, 2073-2076
  • Iron-mediated electrochemical reaction of αchloroesters with carbonyl compounds, Durandetti, C. Meignein, J. Périchon, Org. Lett., 2003, 5, 317-320.
  • A simple and inexpensive microfluidic electrolysis cell, Kuleshova, J., Hill-Cousins, J.T., Birkin, P.R., Brown, R.C.D, Pletcher, D, Underwood, T.J., Electrochim Acta, 2011, 56, 4322-4326
  • TEMPO-Mediated Electrooxidation of Primary and Secondary Alcohols in a Microfluidic Electrolytic Cell. Hill-Cousins, J.T., Kuleshova, J., Green, R.A., Birkin, P.R., Underwood T.J., Leach, S.G., Brown, R.C.D., Chemsuschem 2012, 5, 326-331
  • The methoxylation of N-formylpyrrolidine in a microfluidic electrolysis cell for routine synthesis. Kuleshova, J., Hill-Cousins, J. T., Birkin, P. R., Brown, R. C. D., Pletcher, D., Underwood, T. J.,  Electrochim Acta 2012, 69, 197-202.
  • A Microflow Electrolysis Cell for Laboratory Synthesis on the Multigram Scale. Green, R. A., Brown, R. C. D., Pletcher, D., Org Process Res Dev, 2015, 19, 1424-1427
  • N-Heterocyclic Carbene-Mediated Microfluidic Oxidative Electrosynthesis of Amides from Aldehydes. Green, R. A., Pletcher, D., Leach, S. G., Brown, R. C. D., Org Lett 2016, 18, 1198-1201
  • An extended channel length microflow electrolysis cell for convenient laboratory synthesis. Green, R. A., Brown, R. C. D., Pletcher, D., Harji, B.,  Electrochem Commun, 2016, 73, 63-66
  • Electrosynthesis in Extended Channel Length Microfluidic Electrolysis Cells. Green, R. A., Brown, R. C. D., Pletcher, D.,  J Flow Chem 2016, 6, 191-197
  • N-Heterocyclic Carbene-Mediated Oxidative Electrosynthesis of Esters in a Microflow Cell. Green, R. A., Pletcher, D., Leach, S. G., Brown, R. C. D., Org Lett 2015, 17, 3290-3293
  • Understanding the Performance of a Microfluidic Electrolysis Cell for Routine Organic Electrosynthesis. Green, R. A., Brown, R. C. D., Pletcher, D.,  J Flow Chem, 2015, 5, 31-36

Members Involved